Chastniimastertver.ru

Ремонт бытовой техники
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды регуляторов температуры и давления в отопительной системе, описание специфики их работы и эксплуатации

Виды регуляторов температуры и давления в отопительной системе, описание специфики их работы и эксплуатации

Во время работы отопительной системы необходимо изменять параметры давления и температуры теплоносителя. Это может быть связано с несколькими факторами — перегрев горячей воды, неравномерное гидравлическое распределение. Для решения этих проблем следует установить регуляторы температуры и давления системы отопления.

Приборы контроля температуры отопления

Электронный термостат

Чаще всего необходимо изменять параметры температуры в отопительной системе. Это можно делать как комплексно для всей сети, так и для каждого прибора в отдельности. Поэтому на ответственных участках магистрали нужен механический регулятор температуры для отопления или его электронный аналог.

Какие задачи должны выполнять эти приборы? Прежде всего – контроль и своевременное изменение температурного режима в системе. В зависимости от конструкции и области применения регуляторы температуры для батарей отопления и всего теплоснабжения в целом могут быть нескольких типов:

  • Контроллеры работы всей отопительной системы. К ним относится погодный регулятор отопления, который подключается непосредственно к котлу или распределительному узлу системы;
  • Терморегуляторы зонального воздействия. Эту функцию выполняет регулятор батареи отопления, который ограничивает приток теплоносителя в зависимости от текущих показаний температуры.

Каждый из этих классов приборов отливается конструктивно и имеет свою индивидуальную схему установки. Поэтому для правильной комплектации теплоснабжения необходимо разобраться в специфике всех типов терморегуляторов.

Специалисты рекомендуют приобретать радиаторы отопления с регулятором температуры. Это позволит не только сэкономить, но исключит вероятность покупки неправильной модели.

Механические терморегуляторы отопления

Конструкция механического терморегулятора

Механический регулятор батареи отопления является самым простым и надежным прибором для полуавтоматического и автоматического контроля нагрева поверхности радиатора. Он состоит из двух связанных между собой узлов – запорной арматурой и управляющей термоголовкой.

В корпусе управляющей части есть термочувствительный элемент, который изменяет свои размеры под действием температуры. Он соединен с игольчатым клапаном, ограничивающим приток теплоносителя. Для контроля изменения положения клапана регулятор отопления в квартиру имеет спиральную пружину, которая соединена с регулировочной ручкой. Ее поворот увеличивает или уменьшает степень прижатия пружины к теплочувствительному элементу, тем самым устанавливая температуру срабатывания прибора.

Преимущества применения механического регулятора температуры для отопления заключаются в следующем:

  • Возможность регулировки нагрева отдельного радиатора без влияния на параметры всей системы;
  • Простая установка и обслуживание. Эту работу может выполнить даже не специалист. Важно лишь ознакомиться с инструкцией по монтажу в радиаторы отопления регуляторов температуры;
  • Конструкция рассчитана для радиаторов всех типов – стальных, алюминиевых, биметаллических и чугунных. Однако установка регулятора в чугунную батарею отопления не всегда целесообразна. Этот материал обладает высокой теплоемкостью.

Основная сложность монтажа радиаторов отопления с регулятором температуры заключается в правильном расположении управляющего элемента. Нельзя, чтобы горячий воздух от труб или батареи воздействовал на термочувствительный элемент. Это приведет к его неправильному функционированию.

Технология монтажа механического регулятора температуры для теплоснабжения может изменяться в зависимости от конструкции батареи и способа ее подключения к отоплению.

Электронные программаторы отопления

Программатор отопления

Значительно большим функционалом обладают погодные регуляторы отопления. Они состоят из электронного блока управления, который может подключаться к другим элементам теплоснабжения – котлу, терморегуляторам, циркуляционным насосам.

Принцип работы электронных регуляторов отопления в квартиру отличается от механических. Они обрабатывают показания встроенного или внешних термометров для передачи команд управляющим элементам. Так, при изменении температуры в отдельном помещении подается команда на сервопривод регулятора радиатора отопления, который в свою очередь изменяет положение игольчатого клапана.

Специфика функционирования погодный регулятор теплоснабжения выражается в таких нюансах:

  • Обеспечение постоянной подачи электричества для работы прибора;
  • Подключение к другим элементам отопления может быть осуществлено, если устройство регулятора отопления в квартиру имеет соответствующие разъемы;
  • Изменение параметров работы контроллера зависит от заводских настроек. Некоторые модели для радиаторов теплоснабжения с регулятором температуры имеют неизменяемые настройки. Комплексные программаторы отличаются гибким программным обеспечением.

Для организации дистанционного управления регулятором отопления в доме можно установить модуль GPS. С его помощью данные о состоянии системы будут передаваться пользователю в виде SMS. Таким же образом осуществляется обратное управление теплоснабжением. Ручной регулятор температуры отопления не имеет такой функции априори.

Настройка регуляторов температуры для радиаторов отопления осуществляется на основе расчетных параметров системы. В противном случае возможно некорректное функционирование устройства.

Терморегуляторы в отопительных коллекторах

Терморегуляторы в коллекторе отопления

Кроме установки ручных регуляторов температуры отопления в батареи они применяются для комплектации коллекторного теплоснабжения. Их монтаж выполняется как в центральные распределительные гребенки, так и в узел управления системой водяного теплого пола.

В отличие от регуляторов для отопительных радиаторов, в коллекторной группе они выполняют функцию по контролю объема потока теплоносителя в отдельные контуры теплоснабжения. Поэтому требования к конструкции и ее функционалу несколько выше, чем у устройств, рассчитанных для комплектации батарей.

Есть несколько видов терморегуляторов для коллекторных групп:

  • Ручные регуляторы температуры теплоснабжения. Конструктивно ничем не отличаются от аналогичных устройств для батарей. Разница в размере подключаемого патрубка и температурном диапазоне работы. В эксплуатации неудобны, так как настраивать параметры для отдельного контура приходится вручную;
  • Терморегуляторы с сервоприводом. Зачастую они подключаются к внешнему модулю управления. Изменение положения заслонки происходит только при поступлении команды от программатора. Возможны варианты с установкой выносного датчика температуры. Это чаще всего делается для организации смесительных узлов.
Читайте так же:
Установка крана на сливе системы отопления

Установка и эксплуатация подобных терморегуляторов позволит добиться точной настройки отдельных контуров в отоплении. Таким образом можно сэкономить на затратах по использованию энергоносителя и оптимизировать работу всей системы в целом.

Есть два типа терморегуляторов для коллекторного отопления – со съемными сервоприводами и стационарными. Выбор зависит от требуемого функционала системы.

Регуляторы давления в отоплении

Группа безопасности отопления

В закрытой системе теплоснабжения помимо температуры есть еще один не менее важный показатель – давление. В результате нагрева теплоносителя происходит его расширение. С одной стороны это явление способствует лучшей циркуляции горячей воды. Но если не установить регулятор давления для отопления – может произойти аварийная ситуация.

Нормальное значение этого параметра колеблется от 2 до 5 атм. в зависимости от типа отопительной системы. В централизованных магистралях возможно кратковременное превышение давления до 10 атм. Для его стабилизации и предназначен регулятор давления системы отопления.

Принцип работы гидрострелки

В настоящее время есть несколько типов этих приборов, которые отличаются не только внешне, но и функциональными возможностями:

  • Спускной клапан. Удаляет избыток теплоносителя для компенсации давления;
  • Воздухоотводчик. Предназначен для своевременной ликвидации воздушных пробок. Они формируются из-за перегрева горячей воды и могут привести к возникновению аварийных ситуаций;
  • Гидрострелка. Этот регулятор давления воды в системе отопления применяется не только для коллекторных систем, но и в двухтрубных схемах. Он стабилизует давление между подающей и обратной трубой теплоснабжения.

Кроме гидрострелки все остальные приборы для регулирования давления воды в системе отопления имеют изменяемые параметры срабатывания. Т.е. пользователь может сам выставить предельные значения давления, при появлении которых активируется регулирующий элемент.

Расширительный бак для стабилизации давления отопления

Принцип работы расширительного бака

Ключевое влияние на стабильность работы закрытой системы отопления с принудительной циркуляцией оказывает расширительный бак. Он предназначен для автоматической компенсации возникшего избыточного давления на трубы и радиаторы.

Конструктивно это устройство для регулирования давления в отоплении представляет собой емкость, разделенную на две части эластичной мембранной. Одна из полостей с помощью патрубка подключается к отоплению, а во вторую нагнетается воздух. При этом значение давление во второй должно быть меньше максимально допустимого на 5-10%.

Принцип работы мембранного регулятора давления системы отопления можно описать следующим алгоритмом:

  1. Давление в системе нормальное – мембрана не изменяет своего положения.
  2. Произошло критическое расширение теплоносителя. Одновременно с этим мембрана смещается в сторону воздушной камеры, тем самым увеличивая общий объем теплоснабжения. Происходит компенсация избыточного давления.
  3. Резкое падение объема теплоносителя. Регулятор давления воды в отоплении уменьшает объем путем смещения мембраны в сторону водяной камеры. Это происходит под воздействием давления воздушной камеры.

Таким способом происходит автоматическое регулирование давления в отопительной системе. При выборе модели расширительного бака необходимо учитывать возможность замены эластичной мембраны. Есть модели, где это может сделать сам пользователь. Но для баков с небольшим объемом такой возможности нет. После двух-трех сезонов эксплуатации приходится демонтировать старый модуль отопления и устанавливать новый.

Как правильно рассчитать параметры устройств для регулирования давления и температуры отопления? Для этого рекомендуется воспользоваться специализированными программными комплексами. Предварительно вносятся характеристики дома (степень утепления), графическая схема расположения труб, радиаторов и других компонентов теплоснабжения. На основе полученных данных программа даст оптимальные параметры всех элементов.

В видеоматериале можно ознакомиться со спецификой подключения комнатного регулятора температуры в отоплении:

Установка систем регулировки температуры и давления ГВС в Перми

Монтаж автоматики на ГВС для экономии горячей воды и поддержании стабильного давления в системе водоснабжения. Услуги предоставляются в Перми и Пермском крае.

Автоматизация ГВС центрального теплоснабжения и водоснабжения. Экономия достигается за счёт регулировки потребления теплоносителя для нагрева горячей воды в теплообменных аппаратах. Регулировка горячего водоснабжения устанавливается в многоквартирные и многоэтажные дома, жилые здания, заводы, детские сады, школы, МКД, ТСЖ. Автоматическая регулировка ГВС повышает энергоэффективность зданий, подключённых к центральным тепловым сетям

Субсидии за капремонт ИТП!

Государство выделяет субсидии до 80% за регулировку ГВС.

Подробней о возмещении затрат узнайте у наших сотрудников.

За счёт чего достигается экономия ГВС?

  • Потребитель сам решает, когда и какой температуры будет горячая вода
  • Регулировка потребления теплоносителя для нагрева ГВС
  • Снижение потребления теплоносителя в ночное время
  • Уменьшение теплопотерь от перегретых теплообменников
  • Отсутствие закипания теплообменников пластинчатых или кожухотрубных
  • Увеличение срока службы трубопроводов, системы отопления и ГВС
  • Контроль ИТП online, с оповещением об аварийных ситуациях

Комфорт проживания.

  • Нет нужды использовать электрообогреватели.
  • Температура горячей воды постоянная, без резких скачков.
  • Уверенность, что дети не ошпарятся кипятком.

Стоимость монтажа регуляторов на систему ГВС

— Гарантия на работы по капитальному ремонту — 5 лет.

— 9 лет юридическому лицу, а значит – работу выполним в срок, а гарантия будет исполнена.

Пермская сетевая компания ПАО «Т плюс», ООО «ПСК» (г. Пермь)

Городское коммунальное и тепловое хозяйство ПМУП «ГКТХ» (г. Пермь)

ООО «Новая городская инфраструктура Прикамья» ООО «НОВОГОР-Прикамье» (г. Пермь)

ОАО «ЗАКАМСКАЯ ТЭЦ № 5» (г. Краснокамск)

Читайте так же:
Установка и подключение сантехники и бытовой техники

ОАО ООО «ИСП» ИнвестСпецПром (г. Чайковский)

ЗАО «БСК» Березниковская сетевая компания (г. Березники)

ПАО «Уралкалий», ООО «Соликамская ТЭЦ», МУП «Теплоэнерго» (г. Соликамск)

Котельные — № 1, 5, 8, 9, 12, 13, 17, 20, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39 (г. Кунгур)

АО «Интер РАО-Электрогенерация» (г. Добрянка)

Регулировка ГВС клапаном прямого действия.

Предназначены для автоматического поддержания заданной температуры регулируемой среды путём изменения расхода теплоносителя. Клапан закрывается при повышении температуры горячей воды.

Регулятор состоит из термосистемы (датчика температуры) и регулирующего устройства (регулирующего клапана). Термосистема, в свою очередь, состоит из термобаллона совмещенного с узлами настройки и перегрузки, соединенных с узлом перестановки капилляром. Внутренняя герметичная полость термосистемы заполнена теплочувствительной жидкостью.

  • Не требуется дополнительных источников энергии
  • Простота конструкции
  • Доступная цена

Регулировка ГВС электронным регулятором.

Регуляторы расхода тепловой энергии РРТЭ состоят из регулирующего клапана КР, микропроцессорного контроллера и датчика температуры.

На специальный контроллер-регулятор, который является мозгом всей системы, приходит сигнал от датчика температуры находящегося на трубопроводе горячей воды. Далее в контроллере анализируются данные. После вычисления, регулятор отправляет команду на исполнительный механизм – клапан с электроприводом. Регулирующий клапан ограничивает поступление теплоносителя в теплообменник.

Основной принцип автоматических систем заключается в регулировании расхода по измеряемой температуре горячей воды.

За счет снижения величины расхода, происходит уменьшение значение потребляемой тепловой энергии.

  • Высокая энергоэффективность
  • Функции день/ночь, режим выходного дня
  • Архив параметров, графики, отчёты
  • Высокая точность регулирования
  • Простота в ремонте механизмов
  • Отсутствуют ограничения от длины капилляра
  • Возможность работы в ручном режиме

Возможность установки автоматики ГВС определяется инженером-теплотехником на месте.

Выезд специалиста бесплатный и ни к чему не обязывает.

Заказать бесплатный выезд инженера!

Как происходит регулировка температуры ГВС?

Схема с предвключенным подогревателем горячего водоснабжения.

Достоинством этой схемы является постоянный расход теплоносителя на тепловой пункт в течение всего отопительного сезона, который поддерживается регулятором расхода РР. Это делает гидравлический режим тепловой сети стабильным. Недогрев помещений в периоды максимальной нагрузки ГВС компенсируется подачей сетевой воды повышенной температуры в систему отопления в периоды минимального водоразбора или при его отсутствии в ночные часы. Использование теплоаккумулирующей способности зданий практически исключает колебания температуры воздуха в помещениях.

Параллельная схема включения подогревателя горячего водоснабжения.

Схема имеет простую коммутацию. Подогреватель и тепловая сеть рассчитываются на максимальный расход ГВС. В этой схеме теплота сетевой воды используется недостаточно рационально. Не используется теплота обратной сетевой воды, имеющая температуру 40 – 60 о С, хотя она позволяет покрыть значительную долю нагрузки ГВС, и поэтому имеет место завышенный расход сетевой воды на абонентский ввод.

Двухступенчатая последовательная схема.

Преимуществом последовательной схемы по сравнению с двухступенчатой смешанной является выравнивание суточного графика тепловой нагрузки, лучшее использование теплоносителя, что приводит к уменьшению расхода воды в сети. Возврат сетевой воды с низкой температурой улучшает эффект теплофикации, т.к. для подогрева воды можно использовать отборы пара пониженного давления. Сокращение расхода сетевой воды по этой схеме составляет (на тепловой пункт) 40% по сравнению с параллельной и 25% — по сравнению со смешанной.

1-й этап (первая ступень) – нагрев воды с температуры с 5 до 30-40 °С. Нагрев воды происходит в теплообменнике первой ступени, который подключен к обратному трубопроводу системы теплоснабжения.

2-й этап (вторая ступень) – нагрев воды с температуры 30-40 до 60 – 150 °С. Почему такой большой разбег в температуре? Т.к. температура теплоносителя изменяется (72 – 150 °С) в зависимости от температуры наружного воздуха, таковы особенности теплоснабжения.

Двухступенчатая смешанная схема горячего водоснабжения.

Она получила применение и позволяет также использовать теплоаккумулирующую способность зданий. В отличие от обычной смешанной схемы регулятор расхода устанавливается не перед системой отопления, а на вводе до места отбора сетевой воды на вторую ступень подогревателя. Он поддерживает расход не выше заданного.

Помочь разобраться в схемах!

Регулировка давления горячей воды

СНиП 2.04.02-84 Минимальный свободный напор в сети водопровода населенного пункта при максимальном хозяйственно-питьевом водопотреблении на вводе в здание над поверхностью земли должен приниматься при одноэтажной застройке не менее 10 м, при большей этажности на каждый этаж следует добавлять 4 м.

Нормой давления ГВС для городской водопроводной сети считается 40-50 метров водного столба. Его увеличение в два раза способно разорвать соединения труб и вывести из строя сантехнику. А серьезное снижение приводит к отсутствию напора.

В случае если давление упадет до 0,1 МПа, Вы не сможете нормально постирать, вымыть посуду в посудомойке, нагреть воду в колонке и просто помыться в душе. При таком низком напоре в сети, вода не поднимается до верхних этажей.

В домах с централизованным водоснабжением, когда напора в городской сети элементарно не хватает на всех из-за устаревшего оборудования в ЦТП или увеличения числа потребителей в результате массовой застройки, выручить жильцов многоквартирных домов могут насосы повышения давления.

Получить бесплатную консультацию инженера!

Повысительные насосы для воды

Применяются, когда уровень давления в системе холодного или горячего водоснабжения недостаточен. Функции выключателя берет на себя датчик давления воды для насоса. При открытии крана или включении он активизирует работу насоса, который стабилизирует напор в сети.

Читайте так же:
Установка бытовой техники санкт петербург

Автоматизация подачи воды, оборудование насосов устройствами плавного пуска и частотно-регулируемыми преобразователями снижает риски порыва труб, бережет насосную технику, позволяет экономить водные и электроресурсы.

Насосная станция снабжена шкафом управления с частотно-регулируемым преобразователем, что обеспечивает интеллектуальное управление станцией с учетом текущего разбора воды.

Частотный привод

Устройство, используемое для контроля скорости и/или момента двигателей переменного тока путем изменения частоты и напряжения питания электродвигателя. Частотник регулирует производительность насоса, поддерживая давление в системе водоснабжения на заданном значении.

Ещё одним способом регулирования давления воды в ЖКХ является автоматизированная система с электроклапаном, т.е. изменение входного сечения труб с помощью открытия/закрытия запорной арматуры.

Регулятор давления

Для стабилизации напора воды в бытовых трубопроводах используется регулятор типа «после себя». Устройство стабилизирует давление в системе водоснабжения так же, как и РДВ, но работает совершенно по-другому.

Основной функцией, которую выполняют ограничители водяного давления, является стабилизация напора в системе и поддержание его на заданном уровне, предохраняя магистраль и приборы потребления от высоких нагрузок и гидроударов. РДВ представляет собой предохранительный механизм в металлическом корпусе с входным и выходным резьбовым соединением. Устройство может снабжаться манометром и регулировочным винтом для настройки силы напора воды.

Заказать бесплатное обследование специалистом!

Какие задачи решает автоматика ГВС?

— обеспечивать работу тепловых пунктов без постоянного присутствия персонала в ИТП.

— поддержание заданной температуры горячей воды

— ограничение максимального расхода воды из тепловой сети

— поддержание требуемого перепада давлений

— поддержания статического давления

— защита системы ГВС от завышения температуры воды

— поддержание заданного давления воды в системе ГВС

— контроль работы повысительных насосов

— режим включения или выключения резервного насоса при отключении рабочего

Установка и монтаж регуляторов перепада давления

Регулятор перепада давления поставляется с завода ЛДМ комплектно собранным, отрегулированным и испытанным. До собственного монтажа в трубопровод нужно сопоставить данные на заводской табличке с данными в сопроводительной документации. Помимо вышесказанного, регулятор перепада давления нужно осмотреть на отсутствие механического повреждения или загрязнение, внимание нужно уделить внутренним полостям, соединительной резьбе и уплотняющим соединениям.

Типовая схема присоединения регулирующей линии с регулятором перепада давления в обратном трубопроводе:

Схема монтажа регулятора перепада давления на обратном трубопроводе

Замечание: В случае, когда регулятор перепада давления должен перерабатывать высокий перепад давления (Dp > 250 кПа), производитель рекомендует установить регулятор и регулирующий вентиль на прямом трубопроводе. Таким образом, обеспечиваются более благоприятные условия для работы регулятора и качественного функционирования всей системы.

Схема подключения регулятора перепада давления на прямом трубопроводе:

Схема монтажа регулятора перепада давления на прямом трубопроводе

Установка регулятора давления в трубопроводе.
Монтажные положения:

Регулятор перепада давления должен быть установлен в трубопроводе всегда так, чтобы направление движения рабочей среды соответствовало стрелкам на корпусе. Основное рабочее положение регулятора – корпусом арматуры вверх и управляющей головкой вниз. Это положение необходимо соблюдать, главным образом, при редукции давления пара и при температурах более 80C. Однако, в случае жидких и газообразных агентов (сред) при более низких температурах регулятор может быть установлен в любом положении.

Монтаж регулятора давления:

У соединений между трубопроводом и арматурой необходимо обеспечить соосность частей. Возможные редукции трубопровода перед регулятором перепада давления и за ним должны быть постепенными (рекомендуемый угол наклона стенки конического переходника по отношению к оси трубопровода составляет 12-15 градусов) и DN регулятора не должен быть меньше более чем на два размера по сравнению с входным трубопроводом. Для качественного функционирования и низкого уровня шума рекомендуется оставить перед регулятором ровный (прямой) участок трубопровода длиной не менее 6x DN.

Система трубопровода должна быть перед установкой регулятора очищена от осадка и грязи, которые могли бы вызвать повреждение уплотнительных поверхностей или подавление импульсов давления. При наличии грязи в трубопроводе перед регулятором перепада давления необходимо установить надежный фильтр.

При применении привариваемых концов перед началом сварки арматуру необходимо правильно установить в трубопроводе в надлежащем положении. После прихватки сварных соединений арматуру и сальник следует из трубопровода вынуть, отодвинуть накидную гайку и заварить сварные соединения. После остывания патрубков провести обратный монтаж арматуры.

При несоблюдении этого процесса возникает опасность повреждения уплотнительных материалов в резьбовых соединениях внутри регулятора.

Присоединение импульсного трубопровода.

Соединение пространства мембраны с прямым трубопроводом проводится с применением медных трубок, присоединенных с помощью резьбового соединения. Трубки входят в объем поставки регулятора. В мембранную камеру далее от регулятора подводится более высокое давление (давление на входе оборудования p1), в камеру ближе к регулятору подводится более низкое давление (давление на выходе p2). Отбор давления на трубопроводе рекомендуется сбоку для предотвращения попадания в импульсную трубку грязи и осадка со дна трубопровода, а также для предотвращения поступления воздуха.

Импульсный трубопровод регулятора перепада давления.

Контроль после монтажа.

После монтажа в системе трубопроводов необходимо создать давление и проверить все соединения с точки зрения их плотности.

Установка разности давлений.

Установка разности давлений для исполнения с регулируемой головкой RD 122 D2 выполняется путем изменения предварительного напряжения пружины при помощи установочной гайки следующим способом:

Читайте так же:
Установка бытовой техники в санкт петербурге

— вращение направо . разность давлений увеличивается

— вращение налево . разность давлений уменьшается

Настроечный блок регулятора перепада давления

Значения отрегулированной разности давлений можно отсчитать по нижеприведенным диаграммам — по значению на шкале на тяге головки:

Выбор регулятора давления отопления

Здравствуйте, друзья! Эта статья написана мной в соавторстве с Александром Фокиным, начальником отдела маркетинга ОАО «Теплоконтроль», г.Сафоново, Смоленская область. Александр отлично знаком с устройством и работой регуляторов давления в системе отопления.

В одной из самых распространенных схем для тепловых пунктов здании – зависимой, с элеваторным смешением, регуляторы давления прямого действия РД «после себя» служат для создания необходимого напора перед элеватором. Рассмотрим немного, что представляет собой регулятор давления прямого действия. Прежде всего, нужно сказать, что регуляторы давления прямого действия не требуют дополнительных источников энергии, и в этом их несомненное достоинство и преимущество.

Регулятор давления РД-НО

Принцип работы регулятора давления состоит в уравновешивании давления пружины настройки и давления теплоносителя, предаваемого через мембрану (мягкую диафрагму). Мембрана воспринимает импульсы давления с обеих сторон и сопоставляет их разницу с заданной, устанавливаемой посредством соответствующего сжатия пружины гайкой настройки.

Каждому числу оборотов соответствует автоматически поддерживаемый перепад давлений. Отличительная особенность мембраны в регуляторе давления после себя – это то, что по обе стороны мембраны воздействуют не два импульса давления теплоносителя, как у регулятора перепада давлений (расхода), а один, а со второй стороны мембраны присутствует атмосферное давление.

Импульс давления РД «после себя» отбирается на выходе из клапана по направлению движения теплоносителя, поддерживая заданное давление постоянным в точке отбора этого импульса.

Регулятор РД-НО

При увеличении давления на входе в РД, он прикрывается, защищая систему от избыточного давления. Установку РД на требуемое давление осуществляют гайкой настройки.

Регулирующий орган РД и КР НО

Рассмотрим конкретный случай. На входе в ИТП давление 8 кгс/см2, температурный график 150/70 °С, и мы предварительно сделали расчет элеватора и просчитали минимально необходимый располагаемый напор перед элеватором, эта цифра получилась у нас равной 2 кгс/см2. Располагаемый напор — это разница давлений между подачей и обраткой перед элеватором.

Для температурного графика 150/70 °C минимально необходимый располагаемый напор, как правило, в результате расчета получается 1,8-2,4 кгс/см2, а для температурного графика 130/70 °С минимально необходимый располагаемый напор обычно составляет 1,4-1,7 кгс/см2. У нас напомню, получилась цифра 2 кгс/см2, и график — 150/70 °С. Давление в обратке — 4 кгс/см2.

Следовательно, чтобы добиться необходимого просчитанного нами располагаемого напора, давление перед элеватором должно быть 6 кгс/см2. А на вводе в тепловой пункт, давление у нас, напомню, 8 кгс/см2. Значит, РД у нас должен сработать так, чтобы сбросить давление с 8 до 6 кгс/см2, и держать его постоянным «после себя» равным 6 кгс/см2.

Подходим к основной теме статьи – как выбрать регулятор давления для данного конкретного случая. Сразу поясню, регулятор давления выбирают по пропускной способности. Пропускная способность обозначается как Kv, реже встречается обозначение KN. Пропускная способность Kv считается по формуле: Kv = G/√∆P. Пропускную способность можно понимать как способность РД пропускать необходимое количество теплоносителя при наличии нужного постоянного перепада давлений.

В технической литературе встречается также понятие Kvs – это пропускная способность клапана в максимально открытом положении. На практике зачастую наблюдал и наблюдаю, РД подбирают и затем приобретают по диаметру трубопровода. Это не совсем верно.

Производим далее наш расчет. Цифру расхода G, м3/час получить несложно. Она рассчитывается из формулы G = Q/((t1-t2)*0,001). Необходимая цифра Q у нас есть обязательно, в договоре теплоснабжения. Примем Q = 0,98 Гкал/час. Температурный график 150/70 С, следовательно t = 150, t2 = 70 °С. В результате расчета у нас получится цифра 12,25 м3/час. Теперь необходимо определить перепад давлений ∆P. Что в общем случае обозначает эта цифра? Это разница между давлением на входе в тепловой пункт (в нашем случае 8 кгс/см2) и необходимым давлением после регулятора (в нашем случае 6 кгс/см2).

Производим расчет.
Kv = 12,25/√(8-6) = 8,67 м3/час.
В технико — методических пособиях рекомендуют эту цифру умножать еще на 1,2. После умножения на 1,2 получаем 10,404 м3/час.

Итак, пропускная способность клапана у нас есть. Что необходимо делать дальше? Дальше нужно определиться РД какой фирмы вы будете приобретать, и посмотреть технические данные. Скажем, вы решили приобрести РД-НО от компании ОАО Теплоконтроль. Заходим на сайт компании http://www.tcontrol.ru/ , находим необходимый регулятор РД-НО, смотрим его технические характеристики.

Технические характеристики РД-НО

Видим, что для диаметра dу 32 мм пропускная способность 10 м3/час, а для диаметра dу 40мм пропускная способность 16 м3/час. В нашем случае Kv = 10,404, и следовательно, так как рекомендуется выбирать ближайший больший диаметр, то выбираем — dу 40 мм. На этом расчет и выбор регулятора давления считаем законченным.

Далее я попросил Александра Фокина рассказать о технических характеристиках регуляторов давления РД НО ОАО «Теплоконтроль» в системе отопления.

Касаемо, РД-НО нашего производства. Действительно раньше была проблема с мембранами: качество российской резины оставляло желать лучшего. Но уже года 2 с половиной мы делаем мембраны из материала компании EFBE (Франция) — мирового лидера в области производства резинотканных мембранных полотен. Как только заменили материал мембран, так сразу фактически прекратились жалобы на их разрыв.

При этом хотелось бы отметить один из нюансов конструкции мембранного узла у РД-НО. В отличие от представленных на рынке российских и импортных аналогов мембрана у РД-НО не формованная, а плоская, что позволяет при ее разрыве заменить на любой сходный по эластичности кусок резины (от автомобильной камеры, транспортерной ленты и т.д.).

У регуляторов давления других производителей, как правило, необходимо заказывать именно «родную» мембрану. Хотя честно стоит сказать, что разрыв мембраны особенно при работе на воде температурой до 130˚С — это болезнь, как правило, отечественных регуляторов. Зарубежные производители изначально используют высоконадежные материалы при изготовлении мембраны.

Сальники.

Изначально в конструкции РД-НО было сальниковое уплотнение, представлявшее собой подпружиненные фторопластовые манжеты (3-4 штуки). Несмотря на всю простоту и надежность конструкции, периодически их приходилось поджимать гайкой сальника, чтобы предотвратить утечку среды.

Старый РД, сальник

Вообще, исходя из опыта, любое сальниковое уплотнение имеет склонность к потере герметичности: фторкаучук (EPDM), фторопласт, политетрафторэтилен (PTFE), терморасширенный графит — ил-за попаданий механических частиц в область сальника, из «корявой сборки», недостаточной чистоты обработки штока, термического расширения деталей и т.д. Течет все: и Данфосс (чтобы они не говорили), и Самсон с LDM (хотя здесь это исключение), про отечественную регулирующую арматуру я вообще молчу. Вопрос только в том, когда потечет: в течение первых месяцев эксплуатации или в дальнейшем.

Поэтому мы приняли стратегическое решение отказаться от традиционного сальникового уплотнения и заменить его сильфоном. Т.е. использовать так называемое «сильфонное уплотнение», дающее абсолютную герметичность сальникового узла. Т.е. герметичность сальникового узла теперь не зависит ни от перепадов температур, ни от попадания механических частиц в область штока и т.д. — она зависит исключительно от ресурса и циклопрочности применяемых сильфонов. Дополнительно, на случай выхода из строя сильфона, предусмотрено дублирующее уплотняющее кольцо из фторопласта.

Впервые мы применили это решение на регуляторах давления РДПД, а с конца 2013 года начали выпускать и модернизированный РД-НО. При этом нам удалось вместить сильфоны в существующие корпуса. Обычно самым большим (да и по сути единственным минусом) сильфонных клапанов является увеличенные габаритные размеры.

Хотя, мы считаем, что примененные сильфоны не полностью подходят для решения этих задач: думаем, что их ресурса не хватит на все положенные 10 лет работы регулятора (которые обозначены в ГОСТе). Поэтому сейчас мы пробуем заменить используемые трубчатые сильфоны на новые мембранные (их ещё мало кто использует), которые имеют в несколько раз больший ресурс, меньшие габариты при большей «эластичности» и т.д. Но пока за год выпуска сильфонных РД-НО и за 4 года выпуска РДПД ни одной жалобы на разрыв сильфона и утечку среды не было.

Ещё хотел бы отметить, разгруженную клеточную конструкцию клапана РД-НО. Благодаря этой конструкции, он имеет почти идеальную линейную характеристику. А так же невозможность перекоса клапана в результате попадания всякого хлама, плавающего в трубах.

Сантехнические работы Тюмень

Устройство и принцип работы регулятора давления

Редуктор давления – прямого действия состоит из двух основных конструктивных элементов – исполнительного механизма и регулирующего /дроссельного/ органа. Основным рабочим органом исполнительного механизма является чувствительный элемент, сравнивающий текущую величину давления рабочей среды с сигналом – задатчика. Исполнительный механизм регулятора давления служит для преобразования командного сигнала в регулирующее воздействие. Исполнительный механизм управляет перемещением регулирующего органа редуктора, которое осуществляется за счет энергии потока среды.

Читайте так же:
Допуск сро на установку системы видеонаблюдения

Виды редукторов давления

В зависимости от направления действия редукторы давления делятся на следующие основные типы.

Регулятор давления «до себя». Функцией регулятора данного типа является поддержание заданной величины давления среды в контуре системы или на участке, расположенном до клапана.

Регулятор давления «после себя». Функцией регулятора данного типа является поддержание заданной величины давления среды в контуре системы или на участке, расположенном после клапана.

Регулятор перепада давления. Функцией регулятора данного типа является сохранение заданного перепада давления в системе или технологической установке, последовательно соединенной с клапаном (оборудование поддерживает стабильную разницу давлений в установке между двумя импульсными трубками).

Принцип действия квартирных регуляторов давления основан на уравновешивании усилий, создаваемых давлений на входе и выходе за счет отношения площадей, на которые воздействуют эти давления /рис. 3/.

Принцип действия квартирных регуляторов давления

Рис. 3. Принцип действия квартирных регуляторов давления

Обезопасим сантехнические приборы от скачков давления

+7-932-2000-535

Давление на входе – Рвх воздействует на малый поршень, стремясь его открыть. За счет дросселирования в золотнике, связанном с малым поршнем, давление уменьшается до – Pвых. Это пониженное давление воздействует на большой поршень, стремясь закрыть золотник. Пружина большого поршня поддерживает золотник открытым, когда давление на входе ниже настроечного. Вместо большого поршня может использоваться мембрана. В номенклатуре компании – Valtec Base, имеются редукторы давления четырех типов. Они широко используются в квартирных узлах ввода водопровода.

Отопление и водоснабжение – многогранный инженерный процесс,

требующий знаний и умений ПРОФЕССИОНАЛА.

Проясним Вашу ситуацию и ответим на вопросы бесплатно +7-932-2000-535

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector