Chastniimastertver.ru

Ремонт бытовой техники
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ШЛЕЙФ ОХРАННОЙ СИГНАЛИЗАЦИИ

ШЛЕЙФ ОХРАННОЙ СИГНАЛИЗАЦИИ

Давайте разберемся что такое шлейф сигнализации (ШС) и как правильно его организовать. Начнем с того, что охранный шлейф представляет собой соединительную линию (электрическую цепь), объединяющую различные датчики сигнализации (ДС) или извещатели — в контексте данной статьи это синонимы.

Кроме того, в шлейфе присутствует оконечное устройство (ОУ), которое согласует его с приемно-контрольным прибором (ПКП).

  • резисторы;
  • конденсаторы;
  • диоды.

Что именно устанавливается в конце шлейфа зависит от конкретной модели ПКП. Стоит заметить, что в системах охранной сигнализации чаще всего используются резисторы, поэтому будем ориентироваться на этот вариант. Структурная схема шлейфа приведена на рисунке 1.

Шлейф охранной сигнализации схема

Я сразу нарисовал все возможные типы датчиков, их работу мы сейчас рассмотрим, но в реальной ситуации используется, как правило, один вариант подключения и извещатели с одинаковой тактикой формирования тревожного извещения.

Возможны и комбинации различных подключений, но они встречаются достаточно редко. Теперь давайте перейдем к рассмотрению основных типов шлейфов и принципа их действия.

ТИПЫ ШЛЕЙФОВ СИГНАЛИЗАЦИИ

1. ШС с датчиками, работающими «на размыкание».

  • контакты разомкнутся;
  • останутся замкнутыми даже при обнаружении нарушителя.

С первым случаем все ясно и просто — прибор сработает и неисправность таким образом заявит о себе. Второй вариант опасен тем, что обнаружить его можно только при полной проверке работоспособности датчика, которую каждый день никто не делает. Утешает только что такие случаи редки, но, тем не менее, они бывают.

2. ШС с датчиком, работающим на «замыкание».

Отличие от первого варианта разве что в схеме подключения и в том, что при срабатывании шлейф замыкается. В охранной сигнализации используется редко, по крайней мере я с таким способом не сталкивался.

3. Использование извещателя с питанием по шлейфу.

Пусть не часто, но такие датчики используются. Если в первых двух случаях напряжение подается по отдельной линии, то здесь извещатель работает от напряжения, подаваемого на ШС приемно-контрольным прибором. В этом случае сигнал тревога формируется увеличением потребления ДС тока, что отслеживается ПКП.

При этом количество подключаемых датчиков может быть ограничено несколькими штуками. Конкретная величина для различных их типов должна указываться в паспорте охранного прибора (равно как и возможность использования такого варианта).

4. Адресный шлейф сигнализации.

Если до сих пор мы рассматривали случаи, когда осуществлялся токовый контроль ШС, то при использовании адресных извещателей информации об их состоянии передается в цифровом виде. Соответственно информативность системы сигнализации при этом возрастает. ДС может диагностировать свое состояние и передавать его на контрольную панель.

ПАРАМЕТРЫ И НЕИСПРАВНОСТИ

  • «норма»;
  • «обрыв»;
  • «замыкание».

Стоит немного пояснить принцип работы связки ПКП-ШС-ОУ.

Прибор подает на шлейф напряжение, поскольку в нормальном состоянии цепь замкнута в ней возникает электрический ток. Его значение характеризует состояние ШС. Нормальные пределы величины тока задаются оконечным устройством. Отклонение в ту или иную сторону вызывает срабатывание сигнализации.

Сопротивление самого шлейфа, а туда входят также сопротивления переходных контактов в датчиках, определяет максимально допустимые отклонения. При коротком замыкании всего или части ШС (одна из неисправностей) происходит увеличение тока потребления, а обрыв — к его исчезновению. В этом и заключается суть токового контроля.

Таким образом есть еще один критичный параметр — сопротивление утечки между проводами шлейфа, поскольку он является двухпроводной линией, или «землей» и одним из проводников. Эта характеристика указана в паспорте ПКП, но лучше будет если ее значение составит порядка 1 мОм. Хотя многие приборы работают при утечках в несколько десятков кОм.

В завершение один иногда встречающийся вопрос: какова максимальная длина шлейфа охранной сигнализации? Ответ — любая при которой обеспечиваются рассмотренные выше электрические параметры.

© 2014 — 2021 г.г. Все права защищены.

Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и официальных документов

Шлейф (охранно-пожарная сигнализация)

Шлейф (охранно-пожарная сигнализация) — проводные и не проводные линии связи, прокладываемые от пожарных извещателей до распределительной коробки или приемно-контрольного прибора. [1] :пп. 3.93, 3.118

Читайте так же:
Установка строительных бытовок на строительной площадке

Шлейф пожарной сигнализации — линия связи между пожарным приёмно-контрольным прибором, пожарными извещателями и другими устройствами в этой линии. Физически шлейф может быть выполнен электрическими кабелями и проводами, оптико-волоконной линией, по радиоканалу и т. д. Две основные функции шлейфа: приём (передача) информации от пожарных извещателей и подача питания на извещатели. [2]

Шлейф должен обеспечивать совместимость между извещателями и приемно-контрольными приборами или иными устройствами, принимающими сигнал с извещателей. [3] :п. 1.1.9

Охранные и пожарные шлейфы имеют различные алгоритмы работы. Для охранного шлейфа состояние «неисправность» не предусматривается — при обрыве, коротком замыкании, кратковременном или незначительном по величине изменении сопротивления шлейфа формируется сигнал «Тревога». Это вполне оправдано из-за высокой вероятности умышленного повреждения шлейфа с целью отключения охранных извещателей. [4]

Для сигнализации (за исключением местной сигнализации) необходимо использование линий или каналов связи. Сигнализация может производиться несколькими основными методами:

  • дистанционная сигнализация — преобразование измеряемого параметра в другую, более удобную для передачи на расстояние физическую форму, при этом между значениями параметров различной физической формы при этом методе существует вполне определенная функциональная зависимость (безадресные извещатели); [5] :8 если извещатель передает несколько значений импульсного признака, то даже при отсутствии преобразования сигнала в код система относится к телесигнализации; [6] :72 — в кодирующем устройстве сигналы, поступающие от чувствительного элемента, преобразуются в кодированные, наиболее удобные для передачи на расстояние по каналу связи (адресные извещатели). [5] :10

Совокупность шлейфов сигнализации, соединительных линий для передачи по каналам связи или отдельным линиям на прибор приемно-контрольных извещений, устройств для соединения и разветвления кабелей и проводов, подземной канализации, труб и арматуры для прокладки кабелей и проводов входит в линейную часть системы сигнализации.

Содержание

Дистанционная сигнализация [ править | править код ]

Автоматические установки пожаротушения (за исключением автономных) должны выполнять функцию пожарной сигнализации. [1] :п. 4.2 Для автоматического и дистанционного включения установок пожаротушения могут использоваться трубопроводы, заполненный водой, водным раствором, сжатым воздухом или трос с тепловыми замками. [1] :п. 3.64

Механические [ править | править код ]

Первые установки пожарной сигнализации использовали механические шлейфы. Они представляло собой груз, подвешенный на веревке, которая сгорала при пожаре. При этом груз падал и за счет энергии его падения приводился в действие тревожный звонок. Такое устройство было запатентовано в середине XIX века в Англии. В дальнейшем конструкция получила развитие в США в патенте 1886 года. Конструкция использовала несколько шлейфов. [7]

До появления широкодоступного электронного оборудования в качестве побудительных устройств продолжались широко использоваться тросовые устройства. Тросы состояли из нескольких звеньев, звенья троса соединялись легкоплавкими замками. Вместо легкоплавких замков возможно было включать устройства ручного пуска. Концы каждой ветви тросовой системы прикреплялись к рычагу побудительного клапана системы пожаротушения и приспособлению натяжения троса. [8]

Гидравлические [ править | править код ]

Пневматические [ править | править код ]

Проводные [ править | править код ]

Проводные (телесигнализация) [ править | править код ]

Шлейфы пожарной сигнализации, как правило, выполняются проводами связи, если технической документацией на приборы приемно-контрольные пожарные не предусмотрено применение специальных типов проводов или кабелей. Для шлейфов пожарной сигнализации возможно использовать только кабели с медными жилами, диаметром не менее 0,5 мм. Необходим автоматический контроль целостности шлейфа по всей длине.

При параллельной открытой прокладке расстояние от шлейфов пожарной сигнализации с напряжением до 60 В до силовых и осветительных кабелей должно быть не менее 0,5 м. Возможна прокладка шлейфов на расстоянии менее 0,5 м от силовых и осветительных кабелей при условии их экранирования от электромагнитных наводок.

В помещениях, где электромагнитные поля и наводки имеют высокий уровень, шлейфы пожарной сигнализации должны быть защищены от наводок.

В конце шлейфа рекомендуется предусматривать устройство, обеспечивающее визуальный контроль его включенного состояния, а также распределительная коробка для оценки состояния системы пожарной сигнализации, которые необходимо устанавливать на доступном месте и высоте. В качестве такого устройства может быть использован ручной извещатель или устройство контроля шлейфов.

Читайте так же:
Пылесос для алмазной установки

По структуре шлейфы делятся на:

  • радиальные;
  • кольцевые;
  • древовидные;
  • комбинированные [9] .

Безадресные [ править | править код ]

Многопроводные системы телесигнализации являются улучшенными системами дистанционной сигнализации. Для сокращения числа шлейфов применяется несколько (два…четыре) значений импульсного признака на один шлейф. Наиболее употребительные импульсные признаки — полярность и величина. [6] :72

В СССР и России с 1984 по 1997 годы нормировались только безадресные шлейфы. Сигналы формировались дискретным изменением сопротивления электрической цепи, при условии что энергия поступает со стороны приемно-контрольного прибора. Сопротивление должно было иметь следующее значение:

  • «обрыв» — более 20 кОм;
  • «короткое замыкание» — менее 1,5 кОм;
  • «норма», «взятие», «снятие», «проникновение», «пожар», «неисправность» и др. — 1,5…20 кОм. [3] :пп. 2.3.2, 2.3.6
Знакопостоянные [ править | править код ]

Целостность знакопостоянного шлейфа контролируется, используя оконечное устройство — резистор, устанавливаемый в конце шлейфа. Чем больше номинал оконечного резистора, тем меньше ток потребления в дежурном режиме, соответственно, меньше ёмкость источника резервного питания и ниже его стоимость. Состояние шлейфа прибора приемно-контрольного определяет по его току потребления или, что то же самое, по напряжению на резисторе, через который питается шлейф. При включении в шлейф дымовых извещателей ток шлейфа увеличится на величину их суммарного тока в дежурном режиме. Причем его величина для выявления обрыва шлейфа должна быть меньше тока в дежурном режиме не нагруженного шлейфа.

Передача нескольких дискретных сигналов в аналоговый сигнал шлейфа происходит с помощью цифро-аналогового преобразования взвешивающего типа.

Знакопеременные [ править | править код ]

Метод контроля шлейфа сигнализации с питанием шлейфа знакопеременным импульсным напряжением обеспечивает повышение нагрузочной способности шлейфа для питания токопотребляющих извещателей. В качестве выносных элементов шлейфов сигнализации используют последовательно соединенные резистор и диод [10] , в прямом цикле напряжения он включен в обратном направлении и потери на нём отсутствуют. В обратном цикле из-за его короткой длительности потери так же незначительны. [11] Сигнал «Пожар» передается в положительной составляющей сигнала, «Неисправность» — в отрицательной. Для продолжения работы при выдаче сигнала «Неисправность» из-за снятого с базы извещателя, в базу устанавливается диод Шоттки. Таким образом сигнал «Неисправность» из-за снятого извещателя или неисправности самотестирующегося извещателя (например, линейного) не блокирует сигнал «Пожар» от ручного извещателя.

Знакопеременный шлейф позволяет использовать самотестирующиеся извещатели в пороговых шлейфах. При обнаружении неисправности извещатель производит автоматическое изъятие самого себя из шлейфа сигнализации, и это позволяет использовать его совместно с любым пультом пожарной сигнализации, так как контроль изъятия извещателя является обязательным требованием норм пожарной безопасности для всех ПКП [12] .

С пульсирующим напряжением [ править | править код ]

Метод контроля с питанием шлейфа сигнализации пульсирующим напряжением основан на анализе переходных процессов в шлейфе, нагруженном на конденсатор [13] .

Адресные шлейфы [ править | править код ]

В адресных опросных системах пожарной сигнализации производится периодический опрос пожарных извещателей, обеспечивается контроль их работоспособности и идентификация неисправного извещателя прибором приемно-контрольным. Использование в пожарных извещателях этого типа специализированных процессоров с многоразрядными аналого-цифровыми преобразователями, сложными алгоритмами обработки сигналов и энергонезависимой памятью обеспечивает возможность стабилизации уровня чувствительности извещателей и формирование различных сигналов при достижении нижней границы автокомпенсации при загрязнении оптопары и верхней границы при запылении дымовой камеры.

Адресные опросные системы достаточно просто защищаются от обрыва адресного шлейфа и короткого замыкания. В опросных адресных системах пожарной сигнализации может использоваться произвольный вид шлейфа: кольцевой, разветвленный, звездой, любое их сочетание и не требуется никаких оконечных элементов. В опросных адресных системах не требуется разрывать адресный шлейф при снятии извещателя, его наличие подтверждается ответами при запросе прибора приемно — контрольного не реже одного раза в 5 — 10 сек. Если прибор приемно — контрольный при очередном запросе не получает ответ от извещателя его адрес индицируется на дисплее с соответствующим сообщением. Естественно, в этом случае отпадает необходимость использования функции разрыва шлейфа и при отключении одного извещателя сохраняется работоспособность всех остальных извещателей.

Читайте так же:
Установка ubuntu на uefi две системы

Для защиты адресного шлейфа от короткого замыкания используются изолирующие базы, которые при помощи электронных ключей автоматически отключают короткозамкнутый участок адресного шлейфа.

Искробезопасные шлейфы [ править | править код ]

При защите пожарной и охранной сигнализацией взрывоопасных помещений, необходима взрывозащита извещателей и предъявляются дополнительные требования к шлейфам сигнализации. Выбор марки извещателя следует проводить исходя из категории помещения по ПУЭ. В случае применения извещателей с маркировкой «взрывонепроницаемая оболочка» искрозащита шлейфа не требуется.

Искробезопасные шлейфы подключатся к искробезопасным клеммам искробезопасных приборов приемно-контрольных, либо через барьер искрозащиты к обычным приемно-контрольным приборам.

Методика расчета параметров прибора в системе ОПС

При проектировании и эксплуатации систем охранно-пожарной сигнализации возникает необходимость расчета параметров шлейфа и электропитания ОПС.
Соответствие этих параметров требуемым в нормативно-технической документации непосредственно влияет на эксплуатационную надёжность системы ОПС.
Рассмотрим методику расчета некоторых важных параметров.

Расчет сопротивления шлейфа сигнализации и допустимого количества подключаемых извещателей с электрическими контактами на выходе

Допустимое количество включаемых в шлейф сигнализации электроконтактных извещателей определяется из условия сохранения суммарного сопротивления шлейфа сигнализации ниже установленного предельного значения.
Входное сопротивление шлейфа, нагруженного на резистор, определяется по формуле:

где Rвх — входное сопротивление шлейфа сигнализации;
Rд — дополнительное сопротивление, определяемое переходным сопротивлением контактов в местах электрических соединений участков шлейфа, а также сопротивлением контактов в местах подключения извещателей;
Rизв – переходное сопротивление выходных цепей извещателя;
Rпр – сопротивление проводников шлейфа сигнализации;
Rок – сопротивление оконечного элемента.

Сопротивление шлейфа сигнализации Rш, без учёта сопротивления оконечного элемента, определяется по формуле:

Фактическое сопротивление шлейфа сигнализации Rш должно удовлетворять условию:

где Rшд – максимальное допустимое сопротивление шлейфа сигнализации.

Значения сопротивлений Rшд и Rок указываются в технической документации на ПКП.

где Rизвi — переходное сопротивления выходных цепей одного извещателя;
Nпи – общее количество извещателей, включаемых в шлейф.

Для одного извещателя, использующего в чувствительном элементе спаянный (сварной) контакт или сухие электрические контакты (в том числе герметизированные), максимальное значение Rизвi может быть принято 0,15 Ом.

Дополнительное сопротивление Rд определяется по формуле:

где Rдi— максимальное значение дополнительного переходного сопротивления контактов в местах электрических соединений каждого из участков шлейфа, значение Rдi может быть принято 0,1 Ом;
Nпи – общее количество ПИ, включаемых в шлейф;
Ксм – коэффициент сложности монтажа, учитывающий количество электрических соединений участков шлейфа.
Значение Ксм для большинства систем находится в пределах 1,05-1,5.
Для системы пожарной сигнализации средней сложности приближенно может быть принято Ксм = 1,2.

Сопротивление двух проводников шлейфа сигнализации Rпр определяется по формуле

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91088

где ? — удельное сопротивление материала токопроводящей жилы;
для меди ? = 1,72*10 -3 Ом*см;
l – длина шлейфа, м;
S – поперечное сечение токопроводящей жилы, мм 2 .

Значение сопротивления Rпр двух медных проводников шлейфа в зависимости от диаметра жилы и длины приведено в табл. 4.1.

Из выражений (2), (3) с учётом (4)-(6) максимальное количество извещателей, включаемое в шлейф сигнализации, может быть определено по следующей формуле:

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91089

Расчет допустимого количества подключаемых в шлейф сигнализации активных (энергопотребляющих) извещателей

Расчет проводится из условия соответствия токовой нагрузки в двухпроводном шлейфе сигнализации приёмно-контрольного прибора требуемым техническим условиям.
Завышенное значение нагрузки может привести к неустойчивой работе прибора или полной потере его работоспособности.
Значение токовой нагрузки шлейфа с подключенным оконечным элементом и пожарными энергопотребляющими извещателями различных видов определяется по формуле

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91090

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91091

где Iн.доп — максимальное допустимое значение тока потребления всеми установленными в шлейф сигнализации извещателями (указывается в технической документации на прибор приёмно-контрольный);
Q — коэффициент, учитывающий воздействие помех, а также переходные процессы в шлейфе; Q ? (0,7 – 0,8).Опыт эксплуатации приемно-контрольных приборов показал, что для обеспечения их устойчивой работы в условиях влияния электромагнитных помех, а также в моменты включения или кратковременных перерывов напряжения питания, не рекомендуется нагружать шлейфы больше чем на 70 – 80 % от ICмакс.

Читайте так же:
Пылесос для стоматологической установки

Таким образом, допустимое количество пожарных (энергопотребляющих) извещателей k -го типа, включаемых в шлейф сигнализации при установленном количестве извещателей других типов, может быть определено по формуле

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91092

где n — общее количество всех видов энергопотребляющих извещателей, включаемых в шлейф сигнализации;
k — индекс типа извещателя.

Если в шлейф сигнализации включаются извещатели одного k-го типа, то

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91093

При дробном значении результата Nk выбирается как ближайшее меньшее целое.

Таблица 1. Электрическое сопротивление двух медных проводников шлейфа в зависимости от диаметра жилы и длины

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91094

Расчет параметров резервного источника электропитания

Ток потребления системы Iп.д. от резервного источника питания в дежурном режиме:

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91095

где I н.д. – начальный ток приёмно-контрольного прибора в дежурном режиме;
I шj – ток, протекающий в j-ом шлейфе сигнализации;
r количество используемых шлейфов сигнализации;
К — коэффициент преобразования, К = 2.

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91098

где I ншj — начальный ток в шлейфе без извещателей с подключенным оконечным элементом;
I нагр шj — ток нагрузки шлейфа с пожарными энергопотребляющими извещателями различных видов (определяется по формуле (8)).

Ток потребления системы в режиме "Пожар" I п.п (при включении устройств пожарной автоматики):

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91096

где I аz — ток потребления z-й линии пуска пожарной автоматики;
s — общее количество линий пуска.

Время работы системы пожарной сигнализации T в автономном режиме (от резервного источника постоянного тока – аккумулятора) определяется с помощью выражений:

в дежурном режиме:

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91097

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91099

где С — ёмкость аккумуляторной батареи;
M – поправочный коэффициент:
М = 1,1 при С / I п. д. (п.п.) > 10;
М = 1 при 10 > С / I п. д. (п.п.);
М = 0,75 при 4 > С / I п.д. (п.п.) > 1;
М = 0,5 при С / I п.д.(п.п) < 1.

Ёмкость аккумуляторной батареи должна соответствовать условию длительности работы системы пожарной сигнализации в дежурном режиме не менее 24 часов, в режиме "Пожар" — не менее 3 часов.
Длительность работы ПКП системы охранной сигнализации при пропадании напряжения сети должна быть не менее 4 часов.

1. Кирюхина Г.Г., Членов А.Н., Буцынская Т.А. Электронные системы безопасности. Учебное пособие. – М.: НОУ "Такир", 2006. – 288 с.
2. Бабуров В.П., Бабурин В.В., Смирнов В.И., Фомин В.И., Членов А.Н. Лабораторный практикум по курсу "Производственная и пожарная автоматика" Часть II. "Пожарная сигнализация (учебное пособие). – М.: Академия ГПС МЧС России, 2003.-36 с.

ИЗВЕЩАТЕЛЬ ОХРАННЫЙ ПОВЕРХНОСТНЫЙ УДАРНОКОНТАКТНЫЙ ИО 303-4 «ОКНО – 5» Дв2.403.057 ТУ

Извещатель «Окно-5» предназначен для обнаружения разрушения обычного и защищенного полимерной пленкой, обеспечивающей класс защиты А1-А3, стекол толщиной от 2,5 до 8 мм с выдачей тревожного извещения в шлейф охранной сигнализации приборов приемно-контрольных (ППК). Извещатель питается от шлейфа сигнализации ППК и обеспечивает выдачу тревожного извещения путем увеличения тока потребления с одновре-менным включением индикатора БОС в момент разрушения стекла.

Возврат в исходное состояние осуществляется кратковременным отключением напряжения питания шлейфа на время 2 с. Извещатель предназначен для работы в шлейфах приемно – контрольных приборов с величиной тока короткого замыкания не более 20 мА. Подключение извещателей в шлейф осуществляется параллельно.

Конструктивно извещатель состоит из блока обработки сигналов (БОС) и пяти датчиков разрушения стекла (ДРС).

Извещатель является невосстанавливаемым, неремонтируемым изделием.

Гарантийный срок составляет 3 года со дня ввода в эксплуатацию и не более 3,5 лет с даты выпуска предприятием-изготовителем.

2. Основные технические характеристики

Площадь сплошного стеклянного полотна при толщине от 2.5 до 8 мм, охраняемая:
Одним датчиком (ДРС) – до 4±0,1 м²
Комплектом (5шт) датчиков (ДРС) – до 20±0,5 м²
Дальность действия датчиков – до 2,5 м.

Напряжение питания в шлейфе сигнализации: Постоянного тока — от 10 до 30 В Импульсного напряжения прямоугольной формы при скважности не более 2 — от 15 до 30 В

Читайте так же:
Установка системы видеонаблюдения в лифте

Частота пульсирующего тока питания не менее 100 Гц
Ток, потребляемый извещателем (БОС) в дежурном режиме, не более 35 мкА, в режиме тревога не более 20 мА
Напряжение на извещателе в режиме «Тревога» при коммутируемом токе не более 20 мА — не более 5,2 В
Рабочий диапазон температур от минус 40 до +50 °С
Степень защиты оболочки для БОС — IP30, для ДРС- IP47.

3. Комплектность

4. Конструкция

БОС состоит из неразборного пластмассового корпуса, в котором установлена печатная плата с радиоэлементами. ДРС содержит чувствительный элемент (геркон) с двумя подвижными контактами, имеющими заданную разницу масс и упругостей с жесткостью не более 93мН. Корпус ДРС – неразборный.

5. Размещение и монтаж

Извещатель следует размещать с внутренней стороны как наружных, так и внутренних стекол проемов помещений таким образом, чтобы исключить возможность умышленного или случайного повреждения составных частей извещателя или его соединительных линий.

Места размещения составных частей извещателя (БОС, ДРС) определяется количеством, взаимным расположением и площадью блокируемых стеклянных листов. Варианты размещения ДРС приведены на рис. 2.

Взаимное расположение БОС и ДРС должно обеспечивать по минимальную длину соединяющей их линии из расчета: не более 15м двухпроводной линии ДРС на один БОС.

Выбор места для установки ДРС производить с учетом следующим требований (см. рис.2):
— на стекле площадью не более 4, м2, если его диагональ не превышает 2.5 м, ДРС устанавливают по середине верхней стороны стекла на расстоянии от 10-15 см от обвязки. Допускается устанавливать ДРС в одном из углов или у боковых сторон стекла на тех же расстояниях от обвязки, если при этом обеспечивается минимальная длина линии соединения ДРС с БОС;
— на стекле площадью не более 4 м2, если его диагональ превышает 2.5 м, ДРС устанавливают на расстоянии в 10-15 см от обвязки в середине наибольшей стороны или в таком месте, чтобы расстояние от ДРС до самой удаленной точки стекла не превышало 2,5 м;
— на листовом стекле площадью более 4 м2 допускается устанавливать два и более ДРС на расстоянии 10-15 см от обвязки так, чтобы расстояния от ДРС до самых удаленных точек стекла не превышали 2,5 м;
— в случае блокирования остекленных проемов, с большим количеством мелких полотен, количество ДРС, включаемых на один БОС может быть более 5шт., в том случае, если при этом суммарная длина двухпроводной линии ДРС не превышает 15м, а световая индикация обеспечивает удобство и однозначность определения места несанкционированного нарушения.

6. Подключение

Схема подключения извещателя приведена на рис. 1.

Не допустимо включать в линию питания ДРС какие-либо другие инерционные электроконтактные датчики (извещатели) так, как возможный дребезг их контактов, вызванный помехами будет приводить к срабатыванию БОС. Рекомендуемое количество подключаемых к одному шлейфу охранной сигнализации ППК (в зависимости от типа ППК), БОС и ДРС приведены ниже в таблице1.

Таблица 1

Тип ППККоличество подключаемых к одному шлейфу охранной сигнализации ППКЗначение сопротивления оконечного резистора, кОм
БОС, шт. не болееДРС шт.
Гиппо-1М402005.6±5%
Сигнал ВК201008.2±5%
Сигнал 20301504.7±5%

Сопротивление линии питания ДРС с подключенными ДРС должно быть не более 10Ом, а шлейфа охранной сигнализации без оконечного элемента соответствовать величине, установленной для используемого ППК.

7. Проверка работоспособности

Проверка работоспособности извещателя производится неразрушающим ударом металлической пластины по стеклу (кусок ножовочного полотна) на расстоянии 20-50мм от ДРС в направлении стрелки указанной на корпусе ДРС. В момент удара должен включиться световой индикатор БОС, а ППК переключиться в режим «Тревога». Возврат извещателя в дежурный режим производится путем выключения и повторного включения ППК.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector